Bentuk umum : ax² + bx + c = 0
x variabel; a,b,c konstanta ; a ¹ 0
Menyelesaikan persamaan kuadrat berarti mencari harga x yang memenuhi persamaan kudrat (PK) tersebut (disebut akar persamaan kuadrat). Suatu bilangan disebut akar dari suatu persamaan berarti bilangan tersebut memenuhi persamaan.
Andaikan x1 dan x2 adalah akar-akar persamaan kuadrat, maka x1 dan x2 dapat ditentukan dengan cara
- Memfaktorkan
ax² + bx + c = 0 ® ax² + bx + c = 0 ® a (x + p/a) (x + p/a) = 0
® x1 = - p/a dan x2 = - q/a
dengan p.q = a.c dan p + q = b - Melengkapkan bentuk kuadrat
persamaan kuadrat tersebut dibentuk menjadi
(x + p)² = q² ® x + p = ± q
x1 = q - p dan x2 = - q - p - Rumus ABC
ax² + bx + c = 0 ® X1,2 = ( [-b ± Ö(b²-4ac)]/2a
bentuk (b² - 4ac) selanjutnya disebut DISKRIMINAN (D) sehingga
sehingga X1,2 = (-b ± ÖD)/2a
Misalkan persamaan kuadrat ax² + bx + c = 0 dengan x1 dan x2 adalah akar-akarnya.
Dengan menggunakan akar-akar persamaan kuadrat dari rumus ABC, yaitu:
X1 = (-b+ÖD)/2a dan X2 = (-b-ÖD)/2a
didapat hubungan
X1 + X2 = -b/a | X1.X2 = c/a | X1 - X2 = ÖD/a |
Tidak ada komentar:
Posting Komentar